
International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Enhancement of Data Compression Using
Incremental Encoding

Ajit Singh and Yogita Bhatnagar

Abstract— Now a day’s compression is becoming more popular, because it helps to reduce the size of data from its original size of the
data. This paper describes the two phase encoding technique which compresses the sorted data more efficiently. The research paper

provides a way to enhance the compression technique by merging RLE compression algorithm and incremental compression algorithm. In
first phase the data is compressed by RLE (Run length encoding) algorithm that compresses the frequent occur data bits by short bits. In
the second phase incremental compression algorithm stores the prefix of previous symbol from the current symbol and replaces with

integer value. The proposed technique increases the compression rate as from RLE compression algorithm and incremental compression
algorithm. In future the proposed mechanism will be very beneficial for compression large amount of data.

Index Terms— Combination of Incremental & RLE encoding, Compression, Compression technique, Enhancement of Incremental

algorithm, Incremental encoding, Lossless compression, Lossy compression, Run length encoding

—————————— ——————————

1 INTRODUCTION

Data compression is an art of reducing the size of original
data and data compression stores the same amount of data
in few bits.[1] Data compression is also referred to as
encoding, encoding generally encompasses the special
representation of data which satisfies the need. This Paper
specifies the study of efficient encoding and develops an
algorithm to encode the data into as few bits as possible.
The primary objective of data compression is to minimize
the amount of data to be transmitted. The theme of this
paper is to present and analyze a data compression
technique.
Compression is necessary. It helps to reduce the
consumption of expensive resources, such as hard

disk space or transmission bandwidth. Compressed data
can be decompressed when required. [2]

Many data processing applications require storage of large
volumes of data, the number of such applications is
constantly increasing. At the same time, the communication
networks are having in massive transfer of data through
communication channels. Compressed data is stored or
transmitted that reduces storage and communication costs.
When reduced data is transmitted through links, the effect
will increase the capacity of the communication links.
Similarly the capacity of the storage medium is double, by
compressing a file to half of its original size. This becomes
viable to store the data at a higher that reduce the load on
the input/output channels of the computer system. [3]

2 COMPRESSION TECHNIQUES

Compression techniques are classified into two types of
compression algorithm classes.

 Lossy compression algorithms
 Lossless compression algorithms

The compression algorithms take input Data A and
compressed that input data to Data A Compressed and
there are also decompressed algorithm for each
compression algorithm to regenerate the data. Decision for
which type of class of algorithm to use for compression &
decompression is depends on the type of data and also the
requirement of the user.

————————————————

 Dr. Ajit Singh is presently working as Chairperson in School of Engineering
& Sciences in BPSMV, Khanpur Kalan (Sonipat) and also having additional
charge as Director, Computer Centre (UGC). He posses qualifications of
B.Tech, M.Tech, PhD (p). He is a member of BOG (Board of Governors) of
Haryana State Counseling Society, Panchkula and also member of academic
council in the University. He published approximate 20 papers in National/
International journals and conferences and holds a teaching experience of
approximate 10 years. He holds the membership of Internal Quality
Assurance cell, UG-BOS & PG-BOS and the NSS advisory committee. He is
also an associate member of CSI & IETE. His research interests are in
Network Security, Computer Architecture and Data Structure.
E-mail: ghanghas_ajit@rediffmail.com

 Mrs. Yogita Bhatnagar has completed her B.E degree in Information
Technology from Vaish College of Engineering, Rohtak, Maharshi Dayanand
University (MDU), India in the year 2008, and she is pursuing M.Tech in
Information Technology from Bansathali University, Banasthali since June
2010. Currently she is doing internship from B.P.S.M.V Khanpur Kalan,
Sonipat. She has one year working experience as Business Analyst in an
organization. She has presented papers in International and National
Conferences. Her research interests are in Network Security, Software
Engineering and Data Warehousing.
PH-9996325336. E-mail: y.yogita.1986@gmail.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Figure 1: Compression techniques

2.1 Lossless Compression

In lossless compression there is no loss of information. If data
compression technique is lossless data compression technique
then the original data can be easily regenerate from the
compressed data.
For example: - lossless compression is very useful in text
compression.
Because reconstruction of text message as the original message
is very important, a small change in the message can change the
meaning of the message. For example “DO NOT SPIT HERE”
and “DO SPIT HERE”.
Lossless data compression is used in many applications. For
example, it is used in the ZIP file format, also in the Abraham
Lempel algorithm. LZ77 and LZW are lossless data compression
techniques.
In the circumstances where we require data after decompression
exactly as the original data, we use lossless compression
technique. [4]
There are several circumstances where we does not require data
exactly same as the original data so at that time we can proceed
for lossy compression.

2.2 Lossy Compression

As its name suggest there is a loss of information during
compression but it increases compression rate. And the

compressed data by using this technique does not obtained as
the original data. For recover that loss of information we use
much higher compression ratio for compressing the data.
For example: there are some areas where exact original data is
not required. During transmitting some speech and video, the
data are not required as exact as original. They decompress
according to the quality of the data required. This type of
compression is used where any loss of information is affordable.

Lossy compression is used to compress multimedia data (audio,
video and still images) such as streaming media and internet
telephony. In comparison the lossless compression is required
for text and data files, such as bank records and text articles
where exact data is required after decompression. [4]

User can use different data compression techniques according to
their requirement. If user needs more compression and can do
compromise with loss of data then lossy compression is well
suited to him and if user can‟t compromise with loss of data
then Lossless compression is the best option for him.

3 RUN LENGTH ENCODING

Run-length encoding (RLE) is a very popular lossless data
compression technique which follows the idea of compressing
the long sequence of same characters by short values. Run
length encoding is very good compression technique. It encodes
the same data („aaaaa‟) and count number of repetitions in that
data. [1][2]
The idea of RLE is very simple, suppose we have a string
'yyyyy'. The output of RLE is 5'y', 5 meaning that there are 5
bytes of same type of data. It reduces the physical size of
consecutive string of characters.

3.1 Implementation

RLE implementation is very easy, if there are two bytes, then
both of have equal output and then count how many bytes are
equal, then output that message value and continue encoding,
then remove the repeated byte values .The value can't be greater
than 255 because we are using a byte to represent that message.
If the message bytes are not equal, then output the first message,
make the second message the first, and get the next byte as a
second, and start again.

The message is divided into 2 parts, first part is the counter, that
represents that the number of values in the message. The size
would be of 1 to 128 or 256 characters and the counter having
values number of character minus 1. Second part of the message
is the message itself which has the value from 0 to 255
characters.
For example:-
AAAAAAAAAAAAAAA
Our uncompressed message will take 15 bytes to store but after
implementation of RLE Compression algorithm our message
will take 2 bytes memory to store that message value.

Data A

Compressed

Data A

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

AAAAAAAAAAAAAAA -> 15A
Here the counter value is 15.
Consider new message: AAAAAAcccdddddy
The new message is encoded in 4 new 2 bytes packets by using
RLE compression algorithm.
6A3c5d1y

By using RLE encoding the 15 byte string message is
compressed to 8 bytes. RLE provides almost 67% compression
ratio.

RLE schemes are simple and efficient. Its compression depends
on the type of the data to be compressed. RLE is very fast and
efficient algorithm that uses different run length encoding
schemes. As we have seen various examples to compress string
message by using RLE encoding algorithm. In many situations
RLE implements according to the type of data.

 RLE is easy and fast encoding algorithm. It does not
require much CPU POWER.

 RLE implements only when repetitive data is of large
amount.

 RLE algorithm implements different schemes
depending on the type of the data.

4 INCREMENTAL ENCODING ALGORITHM

Incremental algorithm stores the common prefixes or suffixes
with their lengths to remove the reoccurrence. That‟s why it is
also known as front compression and back compression .The
major property of incremental algorithm is that suitable for
sorted data. For e.g. list of words from a dictionary and spread
sheets.
Following is the list of such words:

Input Common prefix
Compressed

output

Abcd No preceding word 0 abcd

abcophyta `abc ̀ 3 ophyta

abcopgh `abcop ̀ 5 gh

Tab No common prefix 0 tab

Tabbed `Tab ̀ 3 bed

Tabbing `Tabb ̀ 4 ing

Tabit `Tab ̀ 3 it
Table 1: Results of Incremental algorithm

The incremental encoding stores the common prefix length that
varies from application to application. This technique stores the
value as a single byte which stores only the change in the
common prefix length and various universal codes. It may be
combined with other general lossless data compression
techniques such as entropy encoding and dictionary coders to
compress the remaining suffixes.

5 PROPOSED TECHNIQUE

The propose technique first apply the RLE compression
algorithm on data and then apply the incremental compression
algorithm on the output of RLE algorithm. We are using “.” as
escape character to differentiate between RLE compressed data
and Incremental compressed data.

5.1 Comparison Analysis

Let‟s take an example to understand the proposed technique
and its advantages in terms of compression ratio with RLE
encoding & incremental encoding. “.” is used to differentiate
data between Incremental and RLE algorithm. In this example
we are taking 3 words as input and compressing the input
words using RLE, Incremental & our proposed technique.
 Below is the comparison table of the algorithm:

Table 2: Comparison analysis table

Uncompressed data takes 36 bytes and after applying RLE
encoding alone it will take 23 bytes and after applying
Incremental encoding alone it will take 23 bytes. But by
using our proposed technique data is taking 18 bytes .Thus
we got compression ratio of 50% by using our proposed
technique.

5.2 Implementation

We have implemented the proposed technique in two phases.
Following are the descriptions of two phases:

First Phase: We are applying RLE encoding technique to
compress the input data.
Second Phase: We are applying Incremental encoding
technique on the output of RLE encoding technique.
The final result is more compressed than the RLE encoding &
Incremental encoding. Also we have used queue as data
structure to implement our proposed algorithms.

Following is the pictorial representation of our technique:

Input Word

RLE
output

Incremental
Output

Proposed
Technique

output

AAAAABBBCC
CDDE

5A3B3CD
DE

AAAAABBB
CCCDDE

5A3B3CD
DE

AAAAABBBCD 5A3BCD 8CD 9.D

AAAAABBCC
CDD

5ABB3C
DD

7CCCDD 7.3CDD

Takes 36 bytes Takes 23
bytes

Takes 23
bytes

Takes 18
bytes

Compression% 33% 33% 50%

http://en.wikipedia.org/wiki/Prefix_(linguistics)
http://en.wikipedia.org/wiki/Affix
http://en.wikipedia.org/wiki/Word
http://en.wikipedia.org/wiki/Dictionary
http://en.wikipedia.org/wiki/Universal_code_(data_compression)
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Entropy_encoding
http://en.wikipedia.org/wiki/Dictionary_coder

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 2: Proposed technique flows

5.2.1 Algorithm for RLE Encoding Engine (Phase 1)

Step 1: Initialize queue; front <- rear <- 0

C.symbol <- P.symbol <- First symbol

Step 2: if (C.symbol == P.symbol)
then enqueue C.symbol
 rear <- rear + 1
 P.symbol <- C.symbol
 C.symbol <- Read Next symbol
 Repeat Step 2.
else Go to Step 3.

Step 3: if (rear > 1)

then print “ (rear + 1) P.symbol “
else print “ Dequeue all symbols “

Step 4: front <- rear <- 0;

P.symbol <- C.symbol

Step 5: if (C.symbol == EOF)
then Exit.
 else Go to Step 2.

5.2.2 Algorithm for Incremental Encoding Engine

(Phase 2)

Step 1: Initialize Queues (Q1, Q2, Q3)

 T.count <- count1 <- count2 <- 0
 alphabet1 <- alphabet2 <- NIL

Step 2: Q1 <- NULL;

 Q2 <- Q3 <- First Word

Step 3: if (Q1 == EMPTY)
 then print “ Dequeue all element of Q2 “

 Go to Step 5.
 else Dequeue one element of Q1 and Q2
for i = 1, 2

 if (Qi(E) == Alphabet)
 then if (counti == 0)

 then counti <- 1

 alphabeti <- Qi(E)
 else counti <- Qi(E)
 Repeat Step 3.

Step 4: if (alphabet1 == alphabet2)
 then T.count <- T.count + count2

 if (count1 == count2)
 then Go to Step 3.
 else print “ T.count ’.’ Dequeue all elements
of Q2 “
else Go to Step 5.

Step 5: Q1 <- Q3; Q2 <- Q3 <- Next Word

T.count <- count1 <- count2 <- 0
alphabet1 <- alphabet2 <- NULL

Step 6: if (Q2 == EMPTY)

 then EXIT.
else Go to Step 3.

6 KEY FEATURES
The proposed technique has the following key features:
 It is Lossless compression technique.
 Compression ratio is very high among lossless

compressions.
 Increase the transmission rate because of high

compression.
 Increase the disk storage capacity.
 It is a two phase enhanced encoding.

7 CONCLUSION
The proposed technique gives an excellent result of data
compression among Lossless compressions. In this technique
we can reduce the size of sorted data by 50% using two phase
encoding technique. Comparison table illustrates the
compression ratio of RLE algorithm, Incremental algorithm and
our proposed technique which shows that compression ratio of
our proposed technique is best among of three which is 50%.

 REFERENCES

1) http://en.wikibooks.org/wiki/Data_Compression
2) http://en.wikipedia.org/wiki/Data_compression

3) http://www.ics.uci.edu/~dan/pubs/DataCompression.html
4) http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=fro

ntcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=fal
se

5) http://datacompression.info/
6) http://www.data-compression.com/index.shtml
7) http://www.cs.cmu.edu/~guyb/realworld/compression.pdf

8) http://www.webopedia.com/TERM/D/data_compression.html
9) Introduction To Data Compression by Khalid

sayood(http://books.google.co.in/books?id=ChSOjgiY84YC&print
sec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&
q&f=false)

10) http://www.amazon.com/Data-Compression-Book-Mark-
Nelson/dp/1558514341#reader_1558514341

http://en.wikibooks.org/wiki/Data_Compression
http://en.wikipedia.org/wiki/Data_compression
http://www.ics.uci.edu/~dan/pubs/DataCompression.html
http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://datacompression.info/
http://www.data-compression.com/index.shtml
http://www.cs.cmu.edu/~guyb/realworld/compression.pdf
http://www.webopedia.com/TERM/D/data_compression.html
http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://books.google.co.in/books?id=ChSOjgiY84YC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://www.amazon.com/Data-Compression-Book-Mark-Nelson/dp/1558514341#reader_1558514341
http://www.amazon.com/Data-Compression-Book-Mark-Nelson/dp/1558514341#reader_1558514341

International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

11) http://www.cs.cmu.edu/~guyb/realworld/compress.html

12) http://en.wikipedia.org/wiki/Run-length_encoding
13) http://en.wikipedia.org/wiki/Run_Length_Limited

14) http://www.fileformat.info/mirror/egff/ch09_03.htm
15) http://www.data-compression.info/Algorithms/RLE/index.htm

16) http://www.arturocampos.com/ac_rle.html
17) http://www.binaryessence.com/dct/en000045.htm

18) http://michael.dipperstein.com/rle/index.html
19) http://pippin.gimp.org/image_processing/chap_dir.html

20) http://wiki.multimedia.cx/index.php?title=Run_Length_Encoding

21) http://www.prepressure.com/library/compression_algorithms/rl
e

22) http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=6006569&

arnumber=6006588
23) http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1055714
24) http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5945475

25) http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5685451

http://www.cs.cmu.edu/~guyb/realworld/compress.html
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run_Length_Limited
http://www.fileformat.info/mirror/egff/ch09_03.htm
http://www.data-compression.info/Algorithms/RLE/index.htm
http://www.arturocampos.com/ac_rle.html
http://www.binaryessence.com/dct/en000045.htm
http://michael.dipperstein.com/rle/index.html
http://pippin.gimp.org/image_processing/chap_dir.html
http://wiki.multimedia.cx/index.php?title=Run_Length_Encoding
http://www.prepressure.com/library/compression_algorithms/rle
http://www.prepressure.com/library/compression_algorithms/rle
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=6006569&arnumber=6006588
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=6006569&arnumber=6006588
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1055714
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5945475

